
TRIEDATA, INC Page i of 73

CLERK E-CERTIFY

API INTERFACE SPECIFICATIONS

Version 1.12.1

January 30, 2021

TRIEDATA, INC Page ii of 73

REVISION HISTORY

Version Date

1.0 9/24/2019

1.1 9/26/2019

1.2 10/7/2019

1.3 10/9/2019

1.4 01/28/2020

1.5 02/06/2019

1.6 03/6/2020

1.7 06/2/2020

1.8 6/20/2020

1.9 6/23/2020

1.10 8/13/2020

1.11 9/21/2020

1.12 10/14/2020

1.12.1 1/30/2021

TRIEDATA, INC Page 3 of 73

1 Overview .. 5

2 Architecture and process flow ... 5

3 Outbound connector interfaces ... 7

3.1 Court connectors .. 7

3.1.1 E-Certify custom connector ... 7

3.1.2 GetImageByDocket() .. 8

3.1.3 Docket by Case Request ... 10

4 Inbound connector interfaces .. 11

4.1 Requests requiring payment collection .. 12

4.1.1 API End points ... 12

4.1.2 Integration of Clerk E-Certify for Online Payment Processing ... 13

4.1.3 ClerkecertifyConnector ... 14

4.1.4 AddCourtDocToShoppingCart() .. 16

4.1.5 AddORDocToShoppingCart().. 17

4.1.6 Removedocfromcart() ... 18

4.1.7 Browser redirection ... 19

4.1.7.1 GetShoppingCartUrl() .. 19

4.1.8 Java script popup window .. 19

4.1.9 Embedded shopping cart view .. 22

4.1.10 Payment confirmation .. 27

4.2 ClerkecertifyConnectorCom - Classic ASP Only .. 31

4.3 Requests without payment collection ... 36

4.3.1 API End points ... 36

4.3.2 API name: SendCertifiedCourtImageByDocketID() ... 37

4.3.3 API name: GetCertifiedCourtImagesByDocketsAndSendEmail () ... 39

4.3.4 API name: SendCertifiedORImageByReferenceNo () ... 42

4.3.5 API name: SendCertifiedORImages () ... 43

4.3.6 API name: GetCertifiedImageByReferenceNoAndSendEmail () ... 45

4.3.7 X509 Certification for Authentication .. 47

4.3.7.1 Installing X509 certificate – Install triedata.com certificate on Client machine: 48

4.3.7.2 Generate self-signed certificate of the client: ... 50

4.3.7.3 Export public key from the self-signed certificate .. 52

TRIEDATA, INC Page 4 of 73

4.3.7.4 Setting up CourtService.svc reference.. 52

4.3.7.5 Consuming CourtService.svc reference ... 55

5 E-Certify Email Delivery Service... 57

5.1 Custom email delivery service ... 58

5.1.1 SendCertifiedCourtDocEmail() .. 58

5.1.1.1 SendEmailRequest .. 58

5.1.1.2 SendEmailResponse ... 60

6 verification ... 60

6.1 Verify by code .. 60

6.1.1 Browser redirection ... 61

6.1.2 Java script modal window .. 61

6.1.3 Embedded view ... 64

6.1.4 QR Code verification on your own web site .. 66

6.2 Verify by file upload .. 68

6.2.1 Browser redirection ... 68

6.2.2 Java script modal window .. 68

6.2.3 Embedded view ... 71

TRIEDATA, INC Page 5 of 73

1 OVERVIEW

Clerk E-Certify application is built with a number of external interfaces to connect with host CMS systems and vice versa. The

system is built with interfaces to allow seam-less integration with Clerk web portal or Clerk applications. Whether the end user

is an online user or Clerk’s themselves or external government agencies, you are able to use the API specifications to integrate

the system with Clerk E-Certify using this API set.

The interfaces are broadly classified into two categories namely outbound connector interfaces and inbound connector

interfaces.

Outbound connector interface it utilized by Clerk E-Certify to interface with diverse court CMS/Official Records systems to

retrieve and process case information, docket information, docket images, official record grantor/grantee information and

official record images.

Inbound connector interface is utilized by external systems such as Clerk CMS applications to interface with Clerk E-Certify. This

interface allows external applications to send documents for eCertification, utilize Clerk E-Certify shopping cart to hold and

process customer requests, invoke Clerk E-Certify API set directly and so on.

Following sections detail both inbound and outbound connector interfaces.

2 ARCHITECTURE AND PROCESS FLOW

TRIEDATA, INC Page 6 of 73

Electronic Certified Document – Digital Certification Process

CLERK E-CERTIFY CERTIFICATION SERVICE USER
Online/Clerk or API

TRIEBRARY
Gateway

Ph
as

e

TRIEBRARY
GateWay

Certified
Document

Request API

Create unique
encrypted code Authentication

Send doc
Request with

encrypted code

Retrieve
Record details

Retrieve
Document

Image

Create cover
page

Create
QR

 Code

Create
Digest of

The entire
document

Encrypt the
Document with

SSL keys

Store
Document

In Local
repository

Log
transaction

status

Forward
Document URL

Display/ Email certified
Document

Clerk
Data Store

Clerk
Image store

Digital
Cryptographic

Hardware

There are four distinct components for creating a certified document namely:

1. Search engine – This is the application used by the end user to search for records. This can be a case

management system, official records system, Clerk E-Certify search system or any other system used by the

end user to identify documents of interest to them. Clerk E-Certify offers its own search engine to search

and locate case information as well as Official records (Please visit https://www.clerkecertify.com) to learn

more.

https://www.clerkecertify.com/

TRIEDATA, INC Page 7 of 73

2. Clerk E-Certify shopping cart – Shopping cart is a repository for storing user selected document information.

Clerk E-Certify application and external applications can interface with the shopping cart and store user

selected document information within the shopping cart. In the event the court applications are utilizing

their own search engine, they can forward selected document information to Clerk E-Certify shopping cart

using inbound connector API’s

3. TRIEBRARY Gateway – This is a WCF based, enterprise scale, web services available to process certification

requests. Access to the gateway requires multiple levels of security. At a minimum a subscriber code and a

token are required to access the gateway. Your subscriber code and token are unique to you and will be

different between the test and production environments. Authentication and authorization to access any

data using the TRIEBRARY gateway is based on your subscriber code and location (IP Address). Access to

court records require additional X509 certificate based mutual authentication.

4. Certification service – Clerk E-Certify certification service is hosted within Clerk’s computing environment

and uses outbound connector interface to connect with court CMS and Official Records systems.

A request to create a certified document is generated by the search engine by invoking one of Clerk E-Certify inbound API’s. If

the process requires collection of certification charges from the end requestor (public users, party to the case, attorney of

record etc.), then shopping cart API’s are invoked. If the request is from a non-paying customer such as government agencies

and Clerk’s, you may invoke direct API’s to generate the certified documents.

Outbound API’s are utilized by Clerk E-Certify certification service to retrieve dockets, images and grantor/grantee information

from the CMS/Official Records repository.

3 OUTBOUND CONNECTOR INTERFACES

Outbound connector interfaces are used by Clerk E-Certify application to connect with Court CMS systems to retrieve dockets,

images and other data entities. Since there are multiple vendors providing both Official Records and Court Management

Systems, Clerk E-Certify offers connectors for most commonly available systems out of the box.

3.1 COURT CONNECTORS

Clerk E-Certify offers standard connectors to connect with various CMS systems

Depending upon your confirmation, you may choose one of the standard connectors or utilize a custom connector to retrieve

information from the host system.

3.1.1 E-CERTIFY CUSTOM CONNECTOR

TRIEDATA, INC Page 8 of 73

Clerk E-Certify signature service will invoke a Clerk’s court service via the TriebraryConnector interface. Clerk’s IT is responsible
for creating the service and provide TRIEDATA the URL of the service. The Clerk’s court service will perform one operation:

Operation Description

GetImageByDocket This operation returns the image of a given court document as memory stream

3.1.2 GETIMAGEBYDOCKET()

This service operation is invoked by Clerk E-Certify signature service to retrieve document images. Clerk’s IT is responsible for
creating the service and this operation.

Method name: GetImageByDocket()

Source: Clerk E-Certify signature service

Target: Clerk’s court service

Method: Https Get

Request Format: JSON

Response Format: JSON

Body Style: Wrapped

Endpoints: Supports REST

Here is the data definition for input to the GetImageByDocket () operation:

Index Field Name Description Definition/Values

1 SubscriberCode A unique identifier associated
with the caller

Not Null

Max Size: 20

Contact TRIEDATA

2 SubscriberName Caller name Not Null

Max Size: 30

i.e. “Online User”

TRIEDATA Will provide the source code and visual studio project for TRIEBRARYConnector WCF service. You must
utilize this project and modify the methods to retrieve necessary information from your system.

TRIEDATA, INC Page 9 of 73

3 CaseNo Case No Not Null

Max Size: 30

4 CaseType Indicating whether UCN or
LOCALCASENUMBER

Not Null, integer

UCN = 1, LOCALCASENUMBER = 2,
UNKNOWN = 3

5 DocketNumber Docket number associated with
the document

Not Null

Max Size: SQL integer (10 chars)

6 RedactionFlag Indicator whether the docket is a
redacted or un-redacted
document

Char string, Not Null

Max Size: 1

‘Y’- redacted

‘N’ – un-redacted

7 Field1 Reserved field used for document
version information

Numeric String, Not Null

Max Size: SQL integer (10 chars)

7 Field2 Not used Not used

8 Field3 Not used Not used

9 Field4 Not used Not used

10 Field5 Not used Not used

GetImageByDocketResponse

Here is the data returned from the GetImageByDocketResponse () operation:

Index Field Name Description Definition/Values

1 ResponseCode Status code Not Null, integer value

Value = 1: success

Value >1: exception

2 ResponseDetails Information for exceptions Nullable,

TRIEDATA, INC Page 10 of 73

Max Size: 100

If there is an exception, provide details
on the error

3 ImageArr Byte array of the document image Nullable, if image is not available

3.1.3 DOCKET BY CASE REQUEST

This API is used by Clerk E-Certify certification service to retrieve docket information for a user provided case number. This API

is applicable only if Clerk E-Certify search engine is used for retrieving case docket information.

API name: GetDocketsByCaseNumber ()

Source: TRIEDATA Clerk E-Certify certification service

Target: CMS API

Method: Http Post

Request Format: Json

Response Format: XML

Body Style: Wrapped

Index Field Name Description Definition/Values

1 SubscriberCode A unique identifier associated with the
caller

Alphanumeric String, Not Null

2 Subscriber name Name of the subscriber. Alphanumeric String, Not Null

The subscriber name matches the
username within Clerk E-Certify
system.

3 Case number UCN or Local case number Alphanumeric String, Not Null

4 Case Type Defines the case type Alphanumeric String, Not Null

 Valid values are

UCN – Uniform case number

LOCALCASENUMBER – Local case
number

Docket by Case Response

TRIEDATA, INC Page 11 of 73

Response type: Synchronous

Response packet consists of one element namely a list of Docket response or null.

List<Docket> - If the subscriber is authorized to access the case and dockets are available

Null – if the subscriber is unauthorized or case is not available

3.1.3.1.1 DOCKET OBJECT

Index Field Name Description Definition/Values

1 Docket ID Document ID associated with the docket Alphanumeric String, Not Null

2 Docket description Description of the docket. Alphanumeric String, Not Null

Maximum length is 100.

3 Docket date Date associated with the docket Datetime String, Not Null

4 Pages Number of pages within the image Numeric, Not null

5 IsImageAvailable Indicates whether there is an image
associated with the docket

Numeric, Not null

Valid values are:

1 – There is an image

0 – No image available

6 IsImagePublic Indicates if the image is public and can be
certified

Numeric, Not null

Valid values are:

1 – There is an image

0 – No image available

7 Reserved1 Reserved fields Unused

8 Reserved2 Reserved fields Unused

4 INBOUND CONNECTOR INTERFACES

This chapter provides technical specifications for the interface between Clerk application and Clerk E-Certify for processing
online certified document requests. There are two types of inbound requests.

1. Requests requiring payment collection

TRIEDATA, INC Page 12 of 73

2. Requests without payment processing

If the request requires collection of payment, then the items need to be added to the shopping cart. You can add as many items
as needed. After adding the items, you can redirect the user to Clerkecertify.com web site to complete payment. Clerk E-Certify
will add its service fee and credit card charges and collect the total amount from the requestor using a credit card payment
method.

If the request does not require payment collection, then you may invoke API directly to generate certified documents. The
documents will be generated within seconds and the call will return with the location where the files are stored (This will be an
IIS based storage within your computing environment).

4.1 REQUESTS REQUIRING PAYMENT COLLECTION

4.1.1 API END POINTS

Type URL

 Picture 1 – System Overview

TRIEDATA, INC Page 13 of 73

Test environment https://test.clerkecertify.com

Production https://www.clerkecertify.com

Subscriber code: Please contract TRIEDATA

Token: Please contract TRIEDATA

4.1.2 INTEGRATION OF CLERK E-CERTIFY FOR ONLINE PAYMENT PROCESSING

Clerk E-Certify shopping cart is able to process external document requests. This method is utilized where the end user is
searching court documents on Clerk’s web site. The Clerk’s web application is responsible for authentication of the end user
and granting the user permission to access court cases and view dockets.

Online process integration with Clerk E-Certify is a two-step process. In step one, the Clerk’s web application sends the docket
payload information as an HTTP POST message to Clerk E-Certify web application with a unique identifier. Clerk E-Certify will
save this information in its system. In the second step, Clerk’s web application redirects the user to Clerk E-Certify shopping cart
passing in the unique identifier for completing the payment processing.

After completing step one, there are three ways to launch the shopping cart.

1. Browser redirection - Redirect the user to Clerkecertify shopping cart window using browser redirection

2. Java script pop up - Use Java script-based shopping cart and display the shopping cart as a pop-up window within your
application.

3. Embedded shopping cart – You can use Javascript to embed the shopping cart within your own HTML web page
without the popup modal window.

Following data elements are transferred to Clerk E-Certify:

• Case number (UCN format)

• Case type (value = “UCN”)

• Docket description

• Docket number (‘Document ID’ and ‘Document Version’)

• Page count

SubscriberCode and token must be obtained to interface with Clerk E-Certify. The SubscriberCode and Token is unique and
used for encrypting information transmitted between Clerk’s web application and Clerk E-Certify. SubscriberCode and
token is not included within this documentation. Please contract TRIEDATA to obtain your SubscriberCode and token.

Note: Your SubscriberCode and token may differ between test environment and the production environment.

https://test.clerkecertify.com/
https://test.clerkecertify.com/
https://www.clerkecertify.com/

TRIEDATA, INC Page 14 of 73

• Redaction Flag

• Quantity

• Version number (sequence number generated by SQL server)

Clerk’s web application can submit one or more documents to Clerk E-Certify shopping cart, by invoking our API’s multiple
times. The Clerk E-Certify application offers following methods for invocation by the Clerk’s application:

Method Description

AddCourtDocToShoppingCart This method is used for sending document request and information to
Clerk E-Certify

GetShoppingCartUrl This method returns the URL of the Clerk E-Certify shopping cart

GetCorsShoppingCartReferenceId() This method returns the CorrelationId of the shopping cart

4.1.3 CLERKECERTIFYCONNECTOR

ClerkecertifyConnector is a windows DLL used for interfacing from Clerk’s web application to Clerk E-Certify. Please contact
TRIEDATA to obtain this DLL. Clerk’s web application or download it from Visual Studio Nuget library. Your application can
invoke methods within this DLL to allow online users to purchase electronic certified court documents with Clerk E-Certify.

Use these instructions for installing the ClerkecertifyConnector within your visual studio-based application:

1. Contact TRIEDATA to obtain ClerkecertifyConnector.dll or download it from VS - Nuget

2. Add ClerkecertifyConnector.dll as a reference to your Visual Studio project

3. Configure your application.

Here is an example on how to invoke the ClerkecertifyConnector methods and send docket information to Clerk E-Certify

CLERKECERTIFYCONNECTOR is available for download as a Visual studio Nuget package. You may download it from your
visual studio-based application.

There are two ways to download it.

Method 1: Use Nuget package manager

1. From your VS project, go to tools -> Nuget package manager -> Manage Nuget packages for solution
2. Browse for “ClerkecertifyConnector” and add it to your project

Method 2: Use Install-package command

1. From your Nuget package manager console, type
2. Install-Package ClerkecertifyConnector

TRIEDATA, INC Page 15 of 73

ShoppingCart

/* Initialize the class */

/* calling application must pass in a unique identifier for each purchase transaction */

ShoppingCart myShoppingCart = new ShoppingCart(UniqueIdentifier, URL,
PublisherCode, SubscriberCode, Token);

OR

ShoppingCart myShoppingCart = new ShoppingCart(UniqueIdentifier, Url,
PublisherCode, SubscriberCode, Token, Firstname, Lastname, EmailId, PhoneNo);

//Firstname, Lastname, EmailID and Phone number of the end user can be passed onto
//clerkecertify application. This will avoid the need for the user to enter this
//information on Clerkecertify shopping cart checkout page

/* next send the docket information to Clerk E-Certify. You must call this method
for each docket ID

CaseNO (UCN only): 372019CF0000001XXXXXX,

CaseNoType: UCN,

Description: “ARREST WRRANT”,

DocumentNo: 12345, (document ID = 12345)

PageCount: 3,

Qty: 1, (always 1 copy per document)

Redactionflag: Y or N

Field1: 444 (Document version),

Field2: null (First name),

Field3: null (Last name),

 Field4: null (Email Id),

 Field5: null (Phone Number)

*/

/* Repeat above step for additional court documents */

/* Finally get the URL for viewing the content of the shopping cart and making the payment */

string url = myShoppingCart.GetShoppingCartUrl();

TRIEDATA, INC Page 16 of 73

A unique identifier to group user requests is always required. Typically, a browser session ID is used as the unique identifier.

In the event the Clerk’s web application is not able to utilize ClerkecertifyConnector DLL library, native methods are available to
interface with Clerk E-Certify. Please contact TRIEDATA for details.

4.1.4 ADDCOURTDOCTOSHOPPINGCART()

This service method is used by Clerk’s Web Application to send docket information to Clerk E-Certify application. Clerk
application invokes this method, which results in a HTTP Post to Clerk eCertify.

Method name: AddCourtDocToShoppingCart ()

Source: Clerk’s Application

Target: Clerk E-Certify Web Application

Method: Https Post

Index Field Name Description Definition/Values

1 CaseNo Case number in UCN format Not Null

Max Size: 30

2 CaseType UCN only Not Null,

Value = “UCN”; always

3 DocketDescription Document description Alphanumeric String, Not Null

Max Size: 100

4 DocketNo Docket number associated with
the document.

Numeric String, Not Null

Max Size: SQL integer (10 chars)

5 PageCount Represents the total number of
pages in each document

Numeric String, Not Null, greater than
0

Integer values

6 Quantity Integer indicating the number of
copies of e-certification

Numeric String, Not Null

Always “1”, since Clerk E-Certify
shopping cart native function provides
ability to adjust qty

TRIEDATA, INC Page 17 of 73

7 Redaction Flag Indicator whether the docket is a
redacted or un-redacted
document

Char string, Not Null

Max Size: 1

‘Y’- redacted

‘N’ – un-redacted

8 Field1 Reserved field, used by Odyssey
clients to send document version
information.

Combined with Document ID, this
field is used to retrieve images
from Odyssey system

Numeric String, Not Null

Max Size: SQL integer (10 chars)

9 Field2 Not used Not used

10 Field3 Not used Not used

11 Field4 Not used Not used

12 Field5 Not used Not used

Return value: This method returns the number of unique documents currently loaded in the shopping cart within Clerk E-
Certify. Returns -1 if the correlation id refers to a shopping cart that is already processed.

4.1.5 ADDORDOCTOSHOPPINGCART()

This service method is used by Clerk’s Web Application to send official record information to Clerk E-Certify application. Clerk
application invokes this method, which results in a HTTP Post to Clerk eCertify.

Method name: AddORDocToShoppingCart ()

Source: Clerk’s Application

Target: Clerk E-Certify Web Application

Method: Https Post

Index Field Name Description Definition/Values

1 ReferenceID Instrument number or CFN
number of the instrument

Not Null

Max Size: 20

TRIEDATA, INC Page 18 of 73

2 Description Description of the instrument
such as Marriage license,
warranty deed etc.

Not Null,

Max size: 100

3 PageCount Represents the total number of
pages in each document

Numeric String, Not Null, greater than
0

Integer values

4 Quantity Integer indicating the number of
copies of e-certification

Numeric String, Not Null

Always “1”, since Clerk E-Certify
shopping cart native function provides
ability to adjust qty

Return value: This method returns the number of unique documents currently available for purchase for the given identifier
within Clerk E-Certify. Returns -1 if the correlation id refers to a shopping cart that is already processed.

The method authenticates request from Clerk website using the IP Address of the sender (Clerk’s web server back-end IP, not a
front-end Client IP). Clerk’s web application can invoke the method multiple times, sending document information one
document at a time. Upon successful data validation, Clerk E-Certify proceeds to save requests in its database.

4.1.6 REMOVEDOCFROMCART()

This service method is used by Clerk’s Web Application to send official record information to Clerk E-Certify application. Clerk
application invokes this method, which results in a HTTP Post to Clerk eCertify.

Method name: RemoveDocFromCart ()

Source: Clerk’s Application

Target: Clerk E-Certify Web Application

Method: Https Post

Index Field Name Description Definition/Values

1 ReferenceID Docket Number,
Instrument
number or CFN
number of the
instrument

Not Null

Max Size: 20

2 DocType This field indicates
whether the
document is an
Official Record or

Possible values are:

• DocumentTypeEnum.DocumentTypes.COURTDOCTYPE
• DocumentTypeEnum.DocumentTypes.ORDOCTYPE

TRIEDATA, INC Page 19 of 73

Court Document.
This is an
enumerated data
type

Return value: This method returns the number of unique documents remaining in the shopping cart after removing the item.

The method authenticates request from Clerk website using the IP Address of the sender (Clerk’s web server back-end IP, not a
front-end Client IP). Clerk’s web application can invoke the method multiple times, to remove each individual item. Please note
that the user has options to remove items from shopping cart view as well.

4.1.7 BROWSER REDIRECTION

After forwarding selected docket/instrument information using API method above, you can redirect the user to
view the shopping cart. User can confirm the details and complete the checkout process using a valid US issued
credit card. This is one of the ways to integrate shopping cart with your application.

4.1.7.1 GETSHOPPINGCARTURL()

This method returns the URL of the Clerk E-Certify shopping cart. The URL query string will include the “UniqueIdentifier” as a
parameter.

All you need to do is redirect the user using JavaScript or other means.

Example:

window.location.href = “URL”;

 Clerk E-Certify performs following actions upon browser redirect.

1. Retrieves document information posted earlier using HTTP Post.

2. Groups all requests using the unique identifier passed in by the caller.

3. Verify images are available for all requested documents.

4. If images are available, they are automatically added to the shopping cart and user is redirected to the shopping cart view.

5. If one or more images are not available, user has the option to proceed to the cart or go back to search engine.

6. User can perform “checkout” to finalize the transaction and receive the documents in email.

4.1.8 JAVA SCRIPT POPUP WINDOW

instead of redirecting the user to clerkecertify.com, you may use Java script to launch the shopping cart as a modal
window within your application. Clerkecertify shopping cart will be displayed to the user as a popup window as
shown below.

TRIEDATA, INC Page 20 of 73

Here are the steps for integrating shopping cart as a popup window

1. Contact TRIEDATA to advise them about your test and production domain. TRIEDATA needs to enable requests
coming from your specific domain (For example: browardclerk.org, osceolaclerk.com etc.)

2. Get shopping cart correlation ID

a. Initialize your shopping cart

b. Add items to the shopping cart as shown in example above

c. Call method GetCorsShoppingCartReferenceId to retrieve the correlation ID

3. Load all pre-requisites such as bootstrap, jQuery etc. for the shopping cart. If your application has already
loaded these components, then you do not need to load them.

ShoppingCart myShoppingCart = new ShoppingCart(SessionID, Url, PublisherCode,
SubscriberCode, Token,"First name","Last name,"Email ID","Phone number");
 foreach (var rec in model.eCertifyORDoc)
 {
 Var ret =
myShoppingCart.AddORDocToShoppingCart(rec.EncryptedInstrumentNo,
rec.DocumentType, rec.PageCount, rec.Quantity.ToString());
 }

var correlationId = myShoppingCart. GetCorsShoppingCartReferenceId ();

TRIEDATA, INC Page 21 of 73

4. Create a HTML Div element to hold the shopping cart modal window

<link href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css" rel="stylesheet"
integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh"
crossorigin="anonymous">

<link href="https://code.jquery.com/ui/1.10.4/themes/ui-lightness/jquery-ui.css" rel="stylesheet" />

<script src="https://code.jquery.com/jquery-1.10.2.js"></script>

<script src="https://code.jquery.com/ui/1.10.4/jquery-ui.js"></script>

<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/js/bootstrap.min.js" integrity="sha384-
wfSDF2E50Y2D1uUdj0O3uMBJnjuUD4Ih7YwaYd1iqfktj0Uod8GCExl3Og8ifwB6" crossorigin="anonymous"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery.form/4.2.2/jquery.form.min.js" integrity="sha384-
FzT3vTVGXqf7wRfy8k4BiyzvbNfeYjK+frTVqZeNDFl8woCbF0CYG6g2fMEFFo/i" crossorigin="anonymous"></script>

<!—idCart is the placeholder to display number of items in the cart -->

<div id="idCart" style="height:50px; width:50px;padding-top:15px;"></div>

<div id="idCorrelationId" hidden></div>

<!—idCart is the placeholder to display shopping cart -->

<div id="idShoppingCartView"></div>

TRIEDATA, INC Page 22 of 73

5. Use JavaScript to populate the DIV upon completion of document load (You may use other events as
appropriate)

That’s all you need to do.

Once you have added new items to the shopping cart, please make sure to refresh the DIV –“ idCart”. This
will update the quantities on the shopping cart automatically.

User may click on the shopping cart for checkout, and this will bring up the pop-up window.

4.1.9 EMBEDDED SHOPPING CART VIEW

Instead of redirecting the user to clerkecertify.com or displaying the shopping cart as a pop-up modal window, you
may use Java script to embed the shopping cart as an inline HTML within your own web portal. This will provide a
seam-less look and feel with your application.

<div id="idCart" style="height:50px; width:50px;padding-top:15px;"></div>

<div id="idCorrelationId" hidden></div>

<script type="text/javascript">
 $(document).ready(function () {
 // Lets get the Cart Image with counts now
 var CorrelationId = $('#idCorrelationId').html();
 var url = ShoppingCartServer-URL +
"/Level2Request/GetCorsCart?CorrelationId="+ CorrelationId;
 $.ajax({
 url: url,
 type: 'get',
 success: function (data) {
 var text = data;
 $('#idCart').html(data);
 }
 });
 });

</script>

// ShoppingCartServer-URL – Please check your documentation for test and
production environments

TRIEDATA, INC Page 23 of 73

Here are the steps for integrating shopping cart as a popup window

6. Contact TRIEDATA to advise them about your test and production domain. TRIEDATA needs to enable requests
coming from your specific domain (For example: browardclerk.org, osceolaclerk.com etc.)

7. Get shopping cart correlation ID

a. Initialize your shopping cart

b. Add items to the shopping cart as shown in example above

c. Call method GetCorsShoppingCartReferenceId to retrieve the correlation ID

8. Load all pre-requisites such as bootstrap, jQuery etc. for the shopping cart. If your application has already
loaded these components, then you do not need to load them.

ShoppingCart myShoppingCart = new ShoppingCart(SessionID, Url, PublisherCode,
SubscriberCode, Token,"First name","Last name,"Email ID","Phone number");
 foreach (var rec in model.eCertifyORDoc)
 {
 Var ret =
myShoppingCart.AddORDocToShoppingCart(rec.EncryptedInstrumentNo,
rec.DocumentType, rec.PageCount, rec.Quantity.ToString());
 }

var correlationId = myShoppingCart. GetCorsShoppingCartReferenceId ();

TRIEDATA, INC Page 24 of 73

9. Create a HTML Div element to hold the shopping cart modal window

<link href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css" rel="stylesheet"
integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh"
crossorigin="anonymous">

<link href="https://code.jquery.com/ui/1.10.4/themes/ui-lightness/jquery-ui.css" rel="stylesheet" />

<script src="https://code.jquery.com/jquery-1.10.2.js"></script>

<script src="https://code.jquery.com/ui/1.10.4/jquery-ui.js"></script>

<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/js/bootstrap.min.js" integrity="sha384-
wfSDF2E50Y2D1uUdj0O3uMBJnjuUD4Ih7YwaYd1iqfktj0Uod8GCExl3Og8ifwB6" crossorigin="anonymous"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery.form/4.2.2/jquery.form.min.js" integrity="sha384-
FzT3vTVGXqf7wRfy8k4BiyzvbNfeYjK+frTVqZeNDFl8woCbF0CYG6g2fMEFFo/i" crossorigin="anonymous"></script>

TRIEDATA, INC Page 25 of 73

10. Use JavaScript to populate the shopping cart DIV upon completion of document load (You may use other
events as appropriate). Please note that after loading the HTML, you need to override the click event and
redirect it to your own shopping cart view. This will disable the pop window.

$('#CECShoppingCartId') is the DIV displaying current shopping cart count. This
DIV is provided and populated by Clerk eCertify. Unless the click event is
overridden, it will prompt a pop up modal window for the shopping cart. Above code

<!—idCart is the placeholder to display number of items in the cart -->

<div id="idCart" style="height:50px; width:50px;padding-top:15px;"></div>

<div id="idCorrelationId" hidden></div>

<!—idCart is the placeholder to display shopping cart -->

<div id="idShoppingCartView"></div>

<script type="text/javascript">
 $(document).ready(function () {
 updateShoppingCartCounter();
 updateShoppingCartView();
 });

function updateShoppingCartCounter() {
// Lets get the Cart Image with counts now

var CorrelationId = $('#idCorrelationId').html();
 var SubscriberCode = $('#idSubscriberCode').html();
 if ("@Model.Url" != null && CorrelationId != null) {
 var url = "@Model.Url" + "/Level2Request/GetCorsCart?CorrelationId=" +
CorrelationId;
 $.ajax({
 url: url,
 type: 'get',
 success: function (data) {
 var text = data;
 $('#idCart').html(data).promise().done(function () {
 $('#CECShoppingCartId').on("click", function (event) {
 event.stopImmediatePropagation();
 window.location.href = "/Home/Court";
 });
 });
 }
 });
 }
 }

</script>

// ShoppingCartServer-URL – Please check your documentation for test and
production environments

TRIEDATA, INC Page 26 of 73

overrides the click event and redirects the user to your controller method. You
can redirect it to your own controller/action here.

11. Use JavaScript to populate the shopping cart view. You can call below function to load the shopping cart
partial view within the div element idShoppingCartView .

 function updateShoppingCartView() {
 // Lets display shopping cart also here
 var CorrelationId = $('#idCorrelationId').html();
 var SubscriberCode = $('#idSubscriberCode').html();
 var url = "@Model.Url" +
"/Level2Request/corsexternalshoppingcartrequest?CorrelationId=" +
CorrelationId + "&CallbackFn=" + "updateShoppingCartCounter";
 $.ajax({
 type: "GET",
 url: url,
 xhrFields: {
 withCredentials : true
 },
 timeout: 10000,
 statusCode: {
 404: function () {
 // Simple not found page, but not
CORS violation

 $("#idShoppingCartView").html(this.url + " not found");
 }
 }
 })
 .fail(function (jqXHR, textStatus) {
 // Empty status is a sign that this may be a CORS violation
 // but also check if the request timed out, or that the domain exists
 if (jqXHR.status > 0 && jqXHR.statusText == "timeout") {
 $("#idShoppingCartView").html("Unable to launch shopping cart:
" + jqXHR.status + " " + jqXHR.statusText + " error");
 return;
 }
 else {
 $("#idShoppingCartView").html("Please refresh your browser page
again: Error code: " + jqXHR.status + "-" + jqXHR.statusText);
 return;
 }
 })
 .done(function (data) {
 // Successful ajax request
 $("#idShoppingCartView").html(data);
 }

TRIEDATA, INC Page 27 of 73

That’s all you need to do.

Each time you add a new item to the shopping cart, you need to refresh the div by reloading the contents
again. It will reflect new items (or deleted items). User can proceed to checkout from your own web
portal without being transferred to Clerkecertify.com.

Users are able to delete items within the shopping cart. Your application may not know if the user has
removed items from the shopping cart. Once the user deletes an item, the shopping cart counter needs to
be updated. This is accomplished by forwarding the callback function handle as a parameter
("&CallbackFn=" + "updateShoppingCartCounter"). Upon deletion of the item, eCertify will
invoke the callback function (updateShoppingCartCounter) and this will be able to display current
counts.

Once the user checks out using credit card on MyFloridaCounty.com, you can setup hooks within
MyFloridaCounty.com to redirect the user to your “Controller/Action”.

MyFloridaCounty will pass the correlationID associated with your shoppingcart. Using the correlation ID,
you can refresh the shopping cart view above, and this time the shopping cart will display payment
confirmation view and users are able to download certified documents from your portal. Diagram below
illustrates user view.

4.1.10 PAYMENT CONFIRMATION

In the event your application is required to update your CMS or Official Records system with payment posting
information for online transactions, you may follow steps below to set up your system. Whenever an online
payment is received from credit card processing system, Clerk eCertify will be able to forward it to your system.
The data packet is sent as a JSON string. Following table details the contents of the JSON object.

You can integrate “Return” button within MyFloridaCounty.com to redirect the user to your own portal. Please
contact TRIEDATA to setup the return hooks.

TRIEDATA, INC Page 28 of 73

1. Create an OrderInfo class in your MVC application (If you are using Java, you can use this model to create
your class as well)

TRIEDATA, INC Page 29 of 73

 public class OrderInfo
 {
 [JsonProperty("CorrelationId")]
 public string CorrelationId { get; set; }
 [JsonProperty("OrderId")]
 public string OrderId { get; set; }
 [JsonProperty("FirstName")]
 public string FirstName { get; set; }
 [JsonProperty("LastName")]
 public string LastName { get; set; }
 [JsonProperty("Phone")]
 public string Phone { get; set; }
 [JsonProperty("Email")]
 public string Email { get; set; }
 [JsonProperty("TotalAmount")]
 public string TotalAmount { get; set; }
 [JsonProperty("TotalAdminFee")]
 public string TotalAdminFee { get; set; }
 [JsonProperty("TotalTechFee")]
 public string TotalTechFee { get; set; }
 [JsonProperty("CreditCardFees")]
 public string CreditCardFees { get; set; }
 [JsonProperty("OrderDate")]
 public System.DateTime OrderDate { get; set; }
 [JsonProperty("PaymentReference")]
 public string PaymentReference { get; set; }
 [JsonProperty("LineItems")]
 public List<LineItem> LineItems { get; set; }
 [JsonProperty("Field1")]
 public string Field1 { get; set; }
 [JsonProperty("Field2")]
 public string Field2 { get; set; }
 [JsonProperty("Field3")]
 public string Field3 { get; set; }
 [JsonProperty("Field4")]
 public string Field4 { get; set; }
 [JsonProperty("Field5")]
 public string Field5 { get; set; }
 }

TRIEDATA, INC Page 30 of 73

2. And create a LineItem class

3. Create a new method to receive the Json packet as shown below

 public class LineItem
 {
 [JsonProperty("OrderDetailId")]
 public int OrderDetailId { get; set; }
 [JsonProperty("DocumentType")]
 public string DocumentType { get; set; }
 [JsonProperty("DocIdentifier")]
 public string DocIdentifier { get; set; }
 [JsonProperty("Description")]
 public string Description { get; set; }
 [JsonProperty("CaseNo")]
 public string CaseNo { get; set; }
 [JsonProperty("AdminFee")]
 public decimal AdminFee { get; set; }
 [JsonProperty("TechFee")]
 public decimal TechFee { get; set; }
 [JsonProperty("Quantity")]
 public int Quantity { get; set; }
 [JsonProperty("PageCount")]
 public int PageCount { get; set; }
 [JsonProperty("StatusCode")]
 public Nullable<int> StatusCode { get; set; }
 [JsonProperty("FulfilledQty")]
 public Nullable<int> FulfilledQty { get; set; }
 [JsonProperty("RegisteredUserLoginName")]
 public string RegisteredUserLoginName { get; set; }
 [JsonProperty("ReactionStatus")]
 public string ReactionStatus { get; set; }
 [JsonProperty("CertifiedDocumentSet")]
 public List<CertifiedDocumentSet> CertifiedDocumentSet { get; set; }
 [JsonProperty("Field1")]
 public string Field1 { get; set; }
 [JsonProperty("Field2")]
 public string Field2 { get; set; }
 [JsonProperty("Field3")]
 public string Field3 { get; set; }
 [JsonProperty("Field4")]
 public string Field4 { get; set; }
 [JsonProperty("Field5")]
 public string Field5 { get; set; }
 }
 public class CertifiedDocumentSet
 {
 [JsonProperty("UniqueCode")]
 public string UniqueCode { get; set; }
 }
 public class GenericResponse
 {
 public string ResponseCode { get; set; }
 public string ResponseDetails { get; set; }

 }

TRIEDATA, INC Page 31 of 73

4. Contact TRIEDATA and provide them your payment posting URL information. Please make sure to enable
firewall rules to allow Clerk eCertify system to post information to your server.

4.2 CLERKECERTIFYCONNECTORCOM - CLASSIC ASP ONLY

ClerkecertifyConnectorCom is a windows DLL used for interfacing from Clerk’s web application developed in Classic ASP. Clerk’s
web application can invoke methods within this DLL to send docket information to Clerk E-Certify shopping cart.

Use these instructions for installing the ClerkecertifyConnectorCom within your visual studio-based application:

1. Contact TRIEDATA to obtain ClerkecertifyConnectorCom.dll

2. Run Visual Studio Developer 32-bit command-line tool Assembly Registration Tool (Regasm.exe) to register the
assembly. Regasm.exe adds information about the class to system registry for COM clients to use the .NET Framework
class

i) Open the command line prompt for VS developer as Administrator

ii) Execute command: RegAsm.exe -tlb “the path to the ClerkecertifyConnectorCom.dll”

iii) Execute command: RegAsm “the path to the ClerkecertifyConnectorCom.dll” /codebase

iv) Check registry and ensure the class being added to the system registry

“Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Classes\ClerkecertifyConnector.ShoppingCart”

3. Configure your application.

Here is an example on how to invoke the ClerkecertifyConnectorCom methods and send docket information to Clerk E-Certify

 [HttpPost]
 public string PaymentPost(OrderInfo data)
 {
 // Do your processing here

 GenericResponse response = new GenericResponse();
 response.ResponseCode = "1";
 response.ResponseDetails = "SUCCESS";
 string myResponse = JsonConvert.SerializeObject(response);
 return myResponse;

 }

TRIEDATA, INC Page 32 of 73

Classic ASP code example for Official Records E-certify

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

<%

<!—example code for generate e-certified Official records for the clerks at the help center -->

dim foo

 set foo = Server.CreateObject("ClerkecertifyConnector.DirectAccess")

 eCertifyResult =
foo.ECertifyORDocument("https://securetest.triedata.com/SmartWeb.svc/ssl/GetCertifiedImageByReferenceNoAndSendEmail",
PublisherCode, SubscriberCode,Token,InstrumenrNo, "UserRef",EmailAddress)

 response.write(eCertifyResult)

 if eCertifyResult = 1 then

 ' We have a successful eCErtify OR result now. Lets print the results

 Response.Write("<div/>")

 for each v in foo.UniqueCode

 Response.Write(v)

 Next

 for each v in foo.FileName

 Response.Write(v)

 Next

 end if

 Response.End

<!—example code for purchase e-certified court documents by the anonymous users -->

 set foo1 = Server.CreateObject("ClerkecertifyConnector.ShoppingCart")

result = foo1.AddORDocToShoppingCartCom(myUniqueID,"https://test.clerkecertify.com","12073", mySubscriberCode, myToken
,"20050009451","Easement","1","1","NULL","NULL","NULL","NULL","NULL")

 Response.Write(result)

 url = foo1.GetShoppingCartUrl("https://test.clerkecertify.com", myUniqueID, " mySubscriberCode ")

 Response.Write(url)

 Response.Redirect(url)

 %>

 </head>

<body>

TRIEDATA, INC Page 33 of 73

Classic ASP code example for Court document e-certify

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

<%

<!—example code for generate e-certified court documents for the clerks at the help center -->

dim foo

set foo = Server.CreateObject("ClerkecertifyConnector.DirectAccess")

RecordCount = foo.AddCourtDocForEcertification("372019CA000006XXXXXX","UCN","description 1", "107832851","Y",
"NULL","NULL","NULL", "NULL", "NULL")

RecordCount = foo.AddCourtDocForEcertification("372019CA000006XXXXXX","UCN","description 2", "107805334","Y",
"NULL","NULL","NULL", "NULL", "NULL")

RecordCount = foo.AddCourtDocForEcertification("372019CA000006XXXXXX","UCN","description 3", " 107599289","Y",
"NULL","NULL","NULL", "NULL", "NULL")

eCertifyResult = foo.ECertifyCourtDocuments("http://localhost:93/Service1.svc", "12073"," mySubscriberCode ","myToken",
"userref","myEmailAddress")

response.write(eCertifyResult)

if eCertifyResult = 1 then

' We have successfully submitted e-Certify request. Lets print the results

 'Lets find the total record count

 for each v in foo.ResponseCode

TotalRecordCount = TotalRecordCount + 1

 Next

 ' Lets put resulting e-certified documents into an 2 dimension array

 reDim myResultSet(TotalRecordCount,5)

 ' First dimension is the total records, second dimensions are the following:

 ' 0 – DocketID ; 1 – UniqueCode; 2 - FileName (URL that calling program call used to retrive the image, for example
https://ecertify.clerk.leon.fl.us:13010/CertifiedCourtImages/CAA-FAF-BCAHD-BAHIAFDDE-BAJHJ-D.pdf

 ' 3 - ResponseCode: ResponseCode is "1" if successfull

 x = 0

 y = 0

 for each v in foo.DocketId

 myResultSet(x,y) = v

 x = x+1

 Next

 x = 0

 y = y+1

 for each v in foo.UniqueCode

 myResultSet(x,y) = v

TRIEDATA, INC Page 34 of 73

 x = x+1

 Next

 x = 0

 y = y+1

 for each v in foo.FileName

 myResultSet(x,y) = v

 x = x+1

 Next

 x = 0

 y = y+1

 TotalRecordCount = 0

 for each v in foo.ResponseCode

 myResultSet(x,y) = v

 x = x+1

 TotalRecordCount = TotalRecordCount + 1

 Next

 ' Now lets print the results

 dim counter

 counter = 0

 Response.Write("<div/> Total record count = ")

 Response.Write(TotalRecordCount)

 Response.Write("<div/>")

 Response.Write("Docket ID"+vbTab +"UniqueCode"+vbTab+"FileName"+vbTab+vbTab+vbTab+"ResponseCode")

 Response.Write("<div/>")

 for counter = 0 to TotalRecordCount - 1

 recordResult = myResultSet(counter,3)

 if recordResult = "1" then

 Response.Write(myResultSet(counter,0) + "-" + myResultSet(counter,1) + "-" +
myResultSet(counter,2) + "-" + myResultSet(counter,3) + "-" + myResultSet(counter,4))

 Response.Write("<div/>")

 else

 Response.Write("Docket ID "+ myResultSet(counter,0) +" Error code = " + myResultSet(counter,4))

 end if

 next

 else

 Response.Write("Error code : " + eCertifyResult)

 end if

<!—example code for purchase e-certified court documents by the anonymous users -->

 set foo1 = Server.CreateObject("ClerkecertifyConnector.ShoppingCart")

TRIEDATA, INC Page 35 of 73

 result =
foo1.AddCourtDocToShoppingCartCom(myUniqueID,"https://test.clerkecertify.com","12073","mySubscriberCode","myToken",
"372019CA000002XXXXXX","UCN","My description","107918943","1","1",’Y’, "","","","","")

 Response.Write(result)

 url = foo1.GetShoppingCartUrl("https://test.clerkecertify.com", myUniqueID, " mySubscriberCode ")

 Response.Write(url)

 Response.Redirect(url)

 %>

 </head>

<body>

TRIEDATA, INC Page 36 of 73

4.3 REQUESTS WITHOUT PAYMENT COLLECTION

In the event CLERK E-CERTIFY is not required to collect payment charges for certified documents, then direct API methods are
available to generate certified documents. Clerk web application or CMS can directly invoke this API to satisfy the request. This
method is used by Clerk applications with their own credit card processing and/or point of sale counters.

4.3.1 API END POINTS

Type URL

Test environment for Court Document e-certify http://securetest.triedata.com/CourtService.svc

Production for Court Document e-certify http://secure.triedata.com/CourtService.svc

Test environment for Official Records e-certify https://securetest.triedata.com/SmartWeb.svc

Production for Official Records e-certify https://secure.triedata.com/SmartWeb.svc

Subscriber code: Please contract TRIEDATA

Token: Please contract TRIEDATA

There are two different types of API’s available to satisfy your request. Please choose the API based on your usage.

CERTIFIED COURT DOCUMENTS

• SendCertifiedCourtImageByDocketID – This API is used in scenarios where your system is responsible for collecting
online payments. After processing the payment, you can invoke this service to request generation of certified
documents. The request will be queued and processed within a minute.

CourtService.svc endpoints are protected with X509 Certification for
Authentication. You must configure X509 certificates and supply the
public keys of your certificate to TRIEDATA before testing the interface.
You also need to configure TRIEDATA public certificate in your API service.

http://securetest.triedata.com/CourtService.svc
http://secure.triedata.com/CourtService.svc
https://securetest.triedata.com/SmartWeb.svc
https://secure.triedata.com/SmartWeb.svc

TRIEDATA, INC Page 37 of 73

• GetCertifiedCourtImagesByDocketsAndSendEmail – This API is used for generating certified document for point of
sale Customer. This is a synchronous call and the call will wait until the certified document has been generated. This
API is used for interfacing with point of sale terminals.

CERTIFIED OFFICIAL DOCUMENTS

• SendCertifiedORImageByReferenceNo– This API is used in scenarios where your system is responsible for collecting
online payments. After processing the payment, you can invoke this service to request generation of certified official
documents. The request will be queued and processed within a minute.

• GetCertifiedImageByReferenceNoAndSendEmail – This API is used for generating certified document for point of sale
Customer. This is a synchronous call and the call will wait until the certified document has been generated. This API is
used for interfacing with point of sale terminals.

4.3.2 API NAME: SENDCERTIFIEDCOURTIMAGEBYDOCKETID()

Source: Clerk’s website

Target: Clerk E-Certify Gateway Cloud Service (a.k.a. Gateway)

Method: Https Post

Request Format: Json

Response Format: XML

Body Style: Wrapped

Index Field Name Description Definition/Values

SendCertifiedCourtImageByDocketID transaction queues the request and
processes it upon availability of resources. In the event network resources are
unavailable or system unavailability, the request is queued until the system is
available. This is the preferred method for processing requests generated after
collecting payment from an online source.

Certified copies of very large documents (more than 250 pages) will take a
longer time than usually allocated time. Since
SendCertifiedCourtImageByDocketId is an asynchronous process, it will
generate the document even after XML API timeout.

TRIEDATA, INC Page 38 of 73

1 SubscriberCode A unique identifier associated
with the caller

Not Null

2 Token An encrypted toke for the
Subscriber

Not Null

Token for the subscriber will be by
provided by TRIEDATA)

3 PublisherId A unique identifier associated
with the county

Not Null

4 EmailID Email provided by internet
users to receive e-certificates

Alphanumeric String, less than 100
characters, Not Null

5 List<CertImagesRequest> List of documents for electronic
certification

Object

6 UserRef Online order number Alphanumeric String less than 50
characters, Not Null

Response type: Synchronous

Response packet consists of two elements namely Websvcresponse object and CourtCertifiedImages response.

Response details Description Definition/Values

Websvcresponse Indicates the result of the
web service request.

Object

List<CourtCertifiedImages> Indicates the result of each
requested docket

Object

COURTCERTIFIEDIMAGES OBJECT

Index Field Name Description Definition/Values

1 DocketID Document identifier. We will be
using this identifier to retrieve the
image

Alphanumeric String, Not Null

2 DocketDescription Descriptive summary of the
document. This is usually the

Alphanumeric String, Not Null

Maximum length is 100.

TRIEDATA, INC Page 39 of 73

docket description in Clericus
system.

3 UniqueReferenceNo Unique identifier for the certified
document

Alphanumeric String, Not Null

4 URL Full path to the file name Alphanumeric String, Not Null

example:

https://clerkecertify.com/Download
CertifiedCourtImage/GetECertDoc
ketImage?UniqueReferenceCode=
xxx

(Encrypted unique code)

Note: The URL returned by the service points to a web page for the end user to download the certified documents.
The web page will display current status of the certified document processing and allow end user to
view/download certified document. Since the certification request is processed in a queue, there will be a time lag
of 1-2 minutes before the document will be available for download.

4.3.3 API NAME: GETCERTIFIEDCOURTIMAGESBYDOCKETSANDSENDEMAIL ()

Source: Clerk CMS or Clerk website

Target: Clerk E-Certify Gateway Cloud Service (a.k.a. Gateway)

Method: Https Post

Request Format: Json

Response Format: XML

Body Style: Wrapped

Index Field Name Description Definition/Values

1 SubscriberCode Unique identifier associated with
the caller

Not Null

2 Token Encrypted toke for the Subscriber Not Null

Token for the subscriber will be by
provided by TRIEDATA)

3 PublisherId A unique identifier associated with
the county

Not Null

County FIPS code

https://clerkecertify.com/DownloadCertifiedCourtImage/GetECertDocketImage?UniqueReferenceCode=xxx
https://clerkecertify.com/DownloadCertifiedCourtImage/GetECertDocketImage?UniqueReferenceCode=xxx
https://clerkecertify.com/DownloadCertifiedCourtImage/GetECertDocketImage?UniqueReferenceCode=xxx
https://clerkecertify.com/DownloadCertifiedCourtImage/GetECertDocketImage?UniqueReferenceCode=xxx

TRIEDATA, INC Page 40 of 73

4 EmailID Email provided by internet users to
receive e-certificates

Alphanumeric String, less than 100
characters, Not Null

5 List<CertImagesRequest> List of documents for electronic
certification

Object

6 UserRef Online order number Alphanumeric String less than 50
characters, Not Null

CertImagesRequest Object

Index Field Name Description Definition/Values

1 CaseNo Can be either UCN or
LOCALCASENUMBER

Alphanumeric String, Not Null

2 CaseType Case number type Alphanumeric String, Not Null

Valid values are:

“UCN” or “LOCALCASENUMBER”

3 DocketID Document identifier. We will be
using this identifier to retrieve the
image;

If multiple fields are required to
uniquely identify a document, use
“;” as a delimiter. For example,
docketId;VersionId

Alphanumeric String, Not Null

For example:

1) 12345
docketId only;

2) 28547270;28912781
docketId;VersionId

4 DocketDescription Descriptive summary of the
document.

Alphanumeric string, Not Null

Maximum length is 100.

This is a database constraint, a string
over 100 character’s length will be
truncated.

5 RegisteredUserName Not applicable Not applicable

6 RedAct Indicates whether a redacted
document is requested

Y - N

Clerk E-Certify Online Response

TRIEDATA, INC Page 41 of 73

Response type: Synchronous

Response packet consists of two elements namely Websvcresponse object and CourtCertifiedImages response.

Response details Description Definition/Values

Websvcresponse Indicates the result of the web
service request.

Object

List<CourtCertifiedImages> Indicates the result of each
requested docket

Object

Websvcresponse Object

Index Field Name Description Definition/Values

1 TransactionCode Indicates the unique
transaction code associated
with the request

Alphanumeric String, Not Null

Always “1056”- SendCertifiedCTDockt

2 RecordCount Integer. Represents the total
number of records returned
within the data body

Numeric String, Not Null

Integer values

3 ResponseCode Indicates the status of the call Numeric String, Not Null

1 – Success

- Various return codes for all other errors

4 ResponseDetails Description for the error Alphanumeric String

Ex. Success

5 RemainingBalance Indicates remaining balance of
funds available in your escrow
account

Alphanumeric String

Not used

CourtCertifiedImages Object

Index Field Name Description Definition/Values

1 DocketID Caller provided Docket id Alphanumeric String, Not Null

TRIEDATA, INC Page 42 of 73

2 DocketDescription Caller provided description Alphanumeric String, Not Null

Maximum length is 100.

3 UniqueReferenceCode Unique identifier for the certified
document

Alphanumeric String, Not Null

4 FileName Full path to the file name Alphanumeric String, Not Null

example:

https://192.1.1.1/Images/CertifiedImages
/AAA-BBB-CCC.pdf

5 CaseNo Caller provided case number

6 CaseType Caller provided case type

7 Websvcresponse Result for individual requests See websvcresponse object

Please note that in order to access any Court services, your system must be configured to support mutual authentication based
on X509 certificates. Please see section 4.3.6 for detailed instructions for configuring X509 based mutual authentication
certificate security.

4.3.4 API NAME: SENDCERTIFIEDORIMAGEBYREFERENCENO ()

Source: Clerk’s website

Target: Clerk E-Certify Gateway Cloud Service (a.k.a. Gateway)

Method: Https GET

Request Format: XML

Response Format: XML

Body Style: Wrapped

Index Field Name Description Definition/Values

1 SubscriberCode A unique identifier associated
with the caller

Not Null

2 Token An encrypted toke for the
Subscriber

Not Null

Token for the subscriber will be
provided by TRIEDATA)

3 PublisherId A unique identifier associated
with the county

Not Null

https://clerkecertify.com/DownloadCertifiedCourtImage/GetECertDocketImage?UniqueReferenceCode=xxx
https://clerkecertify.com/DownloadCertifiedCourtImage/GetECertDocketImage?UniqueReferenceCode=xxx

TRIEDATA, INC Page 43 of 73

4 EmailID Email provided by internet users
to receive e-certificates

Alphanumeric String, less than 100
characters, Not Null

5 ReferenceNo Instrument number of the
document. This number must be
unique within your application
and should correspond to one
Official Record document.

Numeric string – less than 20
characters, Not Null

6 UserRef Online order number Alphanumeric String less than 50
characters, Not Null

Response type: Synchronous

Response packet consists of two elements namely Websvcresponse object, UniqueReference and URL in response.

Response details Description Definition/Values

Websvcresponse Indicates the result of the
web service request.

Object

UniqueReference
No

Unique identifier for the
certified document

Alphanumeric string, not null

URL Full path to the file name Alphanumeric String, Not Null

example:

https://clerkecertify.com/DownloadCertifiedCourtImage/G
etECertDocketImage?UniqueReferenceCode=xxx

(Encrypted unique code)

Note: The URL returned by the service points to a web page for the end user to download the certified documents. The web
page will display current status of the certified document processing and allow end user to view/download certified document.
Since the certification request is processed in a queue, there will be a time lag of 1-2 minutes before the document will be
available for download.

4.3.5 API NAME: SENDCERTIFIEDORIMAGES ()

This API is used for sending Official Record certification requests in bulk. The request is queued and processed by
eCertify system. This call will receive a synchronous response as a response to the call with details on unique codes
assigned to each individual requests within the call. However, the actual work of creating the certified document(s)
will be queued for future processing and will be executed upon availability of network and other resources (Usually
within a minute). An email message is sent out to the user upon successful completion of the process.

https://clerkecertify.com/DownloadCertifiedCourtImage/GetECertDocketImage?UniqueReferenceCode=xxx
https://clerkecertify.com/DownloadCertifiedCourtImage/GetECertDocketImage?UniqueReferenceCode=xxx

TRIEDATA, INC Page 44 of 73

Source: Clerk’s website

Target: Clerk E-Certify Gateway Cloud Service (a.k.a. Gateway)

Method: Https POST

Request Format: JSON

Response Format: XML

Body Style: Wrapped

Index Field Name Description Definition/Values

1 SubscriberCode A unique identifier associated
with the caller

Not Null

2 Token An encrypted toke for the
Subscriber

Not Null

Token for the subscriber will be
provided by TRIEDATA)

3 PublisherId A unique identifier associated
with the county

Not Null

4 EmailID Email provided by internet
users to receive e-certificates

Alphanumeric String, less than 100
characters, Not Null

5 List<CertORImagesRequest> This list includes Official
Records document identifiers

List

6 UserRef Online order number Alphanumeric String less than 50
characters, Not Null

CertORImagesRequest

Item Description Definition/Values

ReferenceNo Unique instrument
number or reference
number associated with
the document

This field must be unique within your system. For example,
typically the instrument numbers of Official Records are
unique for each document within the Official Records
repository. Cannot exceed 20 numeric characters

DocDescription Description of the
document

Example: MAR for marriage certificate, NOC for notice of
commencement etc.

Max Size: 100

TRIEDATA, INC Page 45 of 73

Response type: Synchronous

Response packet consists of two elements namely Websvcresponse object, UniqueReference and URL in response.

Response details Description Definition/Values

Websvcresponse Indicates the result of the
web service request.

Object

List<ORCertifiedI
mages>

List consisting of
response to each request

List

ORCertifiedImages

Item Description Definition/Values

UniqueReference
No

This is the unique
reference number of the
certified document

Example :AAA-BBB-CCCC”

ReferenceNo This is the reference
number passed by your
system to eCertify

Numeric

Max Size: 20

DocDescription This is the definition
passed by your system to
eCertify

Alphanumeric

Max Size: 100

URL This is the URL to access
results of the certification
process

This URL points to a web page to check status of the
certification operation.

Note: The URL returned by the service points to a web page for the end user to download the certified documents. The web
page will display current status of the certified document processing and allow end user to view/download certified document.
Since the certification request is processed in a queue, there will be a time lag of 1-2 minutes before the document will be
available for download.

4.3.6 API NAME: GETCERTIFIEDIMAGEBYREFERENCENOANDSENDEMAIL ()

Source: Clerk CMS or Clerk website

Target: Clerk E-Certify Gateway Cloud Service (a.k.a. Gateway)

TRIEDATA, INC Page 46 of 73

Method: Https GET

Request Format: XML

Response Format: XML

Body Style: Wrapped

Index Field Name Description Definition/Values

1 SubscriberCode Unique identifier associated
with the caller

Not Null

2 Token Encrypted toke for the
Subscriber

Not Null

Token for the subscriber will be by
provided by TRIEDATA)

3 PublisherId A unique identifier associated
with the county

Not Null

County FIPS code

4 EmailID Email provided by internet users
to receive e-certificates

Alphanumeric String, less than 100
characters, Not Null

5 ReferenceNo Instrument number of the
document.

Numeric string, 20 digit limit

6 UserRef Online order number Alphanumeric String less than 50
characters, Not Null

Clerk E-Certify Online Response

Response type: Synchronous

Response packet consists of two elements namely Websvcresponse object and additional certified document information.

Response details Description Definition/Values

Websvcresponse Indicates the result of the web
service request.

Object

UniqueReferenceNo This is the unique code of the
certified document

Alphanumeric string,

FileName URL to retrieve the certified
document.

This URL will point to the location where the file
is stored within your computing platform. The
URL server address will be pointing to external

TRIEDATA, INC Page 47 of 73

host address through which Clerk eCertify will be
retrieving the image.

4.3.7 X509 CERTIFICATION FOR AUTHENTICATION
Purpose: Triedata XML-API gateway allows customer software applications to interface with Triedata utilizing either SOAP or
RESTful endpoints. Triedata gateway offers two services namely

• SmartWeb.svc: This service is for Official Records Only

• CourtService.svc: This service is for Court Services only

SmartWeb.svc endpoint offers both SOAP as well as RESTful endpoints and does not require client authentication using
certificates.

CourtService.svc offers SOAP endpoints, and require client authentication using X509 certificates. We are using message-based
security to make sure that all messages are encrypted between the server and the Client and only authorized clients can
consume the services.

See document https://docs.microsoft.com/en-us/dotnet/framework/wcf/feature-details/message-security-in-wcf for more
details on message security.

How it works: In order to access CourtService.svc, the Client and the Server both must enable message security on their end. By
default, message security is enabled on Triedata gateway server. Both the Client and the Server presents their own credentials
as part of the “PeerTrust” connectivity. The theory is that both the Client and Server holds their own digital certificates with
private keys within their own local certificate store. They both exchange the public certificates and these certificates are also
stored within their “Personal” certificate store. Here is the configuration looks like

Triedata gateway:

• LocalMachine->Personal certificate store contains the X509 certificate of triedata.com with a private key

• LocalMachine->Personal certificate store contains the X509 certificate of the Client with its public key (No private
keys)

Client system:

• LocalMachine->Personal certificate store contains the X509 certificate of the Client’s digital certificate with the
private key

• LocalMachine->Personal certificate store contains the X509 certificate of triedata.com with its public key (No private
keys)

https://docs.microsoft.com/en-us/dotnet/framework/wcf/feature-details/message-security-in-wcf

TRIEDATA, INC Page 48 of 73

When the messages are sent from the Client to the server, they are encrypted using Clients private key. Triedata server
decrypts them using the Clients public keys stores in its “Personal” folder. The same way, when the messages are sent from
triedata.com, they are encrypted with Triedata.com’s private key and decrypted by the Client using Triedata.com’s public
certificate.

4.3.7.1 INSTALLING X509 CERTIFICATE – INSTALL TRIEDATA.COM CERTIFICATE ON CLIENT MACHINE:

1. Triedata.com gateway CourtService.svc API is already configured to process X509 certificates. We will provide you a
“.cer” file with triedata.com public key. Double click on this “.cer” file and click on “Install Certificate” as shown below

2. Select LocalMachine store

TRIEDATA, INC Page 49 of 73

3. Select the location of the store by clicking on “Place all certificates in the following store”

TRIEDATA, INC Page 50 of 73

4. Select “Personal” store

Now the first part of the configuration to access Triedata gateway CourtService.svc API’s is complete.

4.3.7.2 GENERATE SELF-SIGNED CERTIFICATE OF THE CLIENT:

Next step is to create a self-signed certificate for the client. Follow the instructions provided by the link to create a self-signed
certificate.

https://www.sslshopper.com/article-how-to-create-a-self-signed-certificate-in-iis-7.html

(Note: DO NOT MOVE THE CERTIFICATE TO “TRUSTED PEOPLE ROOT CERTIFICATION AUTHORITIES). You can ignore all steps
after step 6.

• Name the client as “myclientCertificate”

• Now your self-signed certificate will be in the LocalMachine->Personal folder

• Go ahead and launch “mmc” and add Certificates snapshot for LocalMachine. Double click on your certificate and
make sure that you have the private key corresponding to the certificate as shown below.

https://www.sslshopper.com/article-how-to-create-a-self-signed-certificate-in-iis-7.html

TRIEDATA, INC Page 51 of 73

Alright, you have the certificate with private key in your LocalMachine->Personal folder. Next step is to provide access
to the current user to be able to access this private key.

To do so select the certificate with private key and right click -> and select manage private keys…

TRIEDATA, INC Page 52 of 73

Now add the application user to the approved list. If you are deploying it in IIS, add IIS_USERS to this permission list.

4.3.7.3 EXPORT PUBLIC KEY FROM THE SELF-SIGNED CERTIFICATE

Next step is to export the public key of the self-signed certificate. You need to forward this public key to Triedata for us to
configure it in our system.

• In “mmc”, add snap-in for Certificates->ComputerAccount

• Select the certificate “myclientCertificate” from your “Personal” store.

• Retrieve the thumbprint of this certificate. We will need this for future reference.

o Double click on your certificate and go to “Details” tab

o Scroll down to the bottom and select the field named “thumbprint”. Copy the thumbprint to notepad. The
thumbprint contains several spaces, please remove the spaces carefully. ALSO, THE THERE IS AN INVISIBLE
CHARACTER AT THE FRONT OF THE THUMBPRINT CHARACTER. MAKE SURE TO DELETE IT BY PRESSING
BACKSPACE.

o Your thumbprint should look something like this “eb5d607d414114e67afd758c164bfecf088aeeed”. We are
going to use this thumbprint for future use.

• Right mouse click on your certificate and select “All tasks-> export”. Make sure to check “No, do not export the
private key”.

• Store the certificate in your local folder as “myclientCertificate.cer”.

• Email this certificate to us at Support@Triedata.com with subject “x509 Client”

4.3.7.4 SETTING UP COURTSERVICE.SVC REFERENCE

Here are the steps for consuming Triedata CourtService.svc:

1. Open visual studio project and add service reference to the following URL

http://securetest.triedata.com/CourtService.svc

2. Name this as “TriedataReference” for easy reading. The service reference should have created all proxy
classes needed to access the API’s.

3. Make the following changes in your application web.config file

a. Change endpoint as below

mailto:Support@Triedata.com
http://securetest.triedata.com/CourtService.svc

TRIEDATA, INC Page 53 of 73

b. Add clientCredentials behavior (Your certificate thumbprint will differ from example below)

Endpoint configuration

<endpoint address="http:// http://securetest.triedata.com/CourtService.svc

/CourtService.svc/x509"

binding="wsHttpBinding"
bindingConfiguration="WSHttpBinding_ICourtService"

contract="CourtService.ICourtService"
name="WSHttpBinding_ICourtService"
behaviorConfiguration="ClientCredentialsBehavior">

 <identity>

 <dns value="test.triedata.com"/>

 </identity>

 </endpoint>

http://securetest.triedata.com/CourtService.svc

TRIEDATA, INC Page 54 of 73

Service Model

<system.serviceModel>

 <behaviors>

 <endpointBehaviors>

 <behavior name="ClientCredentialsBehavior">

 <!-- DEV-SERVER CONFIGURATION-->

 <clientCredentials>

 <clientCertificate findValue="ENTER YOUR THUMBPRINT"

 x509FindType="FindByThumbprint"

 storeLocation="LocalMachine"

 storeName="My" />

 <serviceCertificate>

 <defaultCertificate findValue="Enter Server thumbprint" x509FindType="FindByThumbprint"

 storeLocation="LocalMachine" storeName="My"/>

 </serviceCertificate>

 </clientCredentials>

 </behavior>

 </endpointBehaviors>

 </behaviors>

a. Verify the binding configuration as shown below

 <wsHttpBinding>

 <binding name="WSHttpBinding_ICourtService" closeTimeout="00:01:00"

 openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:10:00"

 maxBufferPoolSize="2147483647" maxReceivedMessageSize="2147483647">

 <security>

 <message clientCredentialType="Certificate" negotiateServiceCredential="false"

 establishSecurityContext="false" />

 </security>

 </binding>

 </wsHttpBinding>

TRIEDATA, INC Page 55 of 73

4.3.7.5 CONSUMING COURTSERVICE.SVC REFERENCE

We are almost finished now. Let’s consume the service.

Before we can accomplish this, we need to create a helper class as shown below. My service reference is called
“CourtService”. I am going to create a helper class so that I can access the service whether I am in production or
test with the same application. Code is below

TRIEDATA, INC Page 56 of 73

Helper class

using System;

using System.Collections.Generic;

using System.Configuration;

using System.Linq;

using System.Net;

using System.ServiceModel;

using System.Web;

namespace ClerkECertify.Helpers

{

 public class MyCourtServiceReference : TriedataReference.CourtServiceClient

 {

 public MyCourtServiceReference()

 {

 // Lets get Test and Prod server names

 string LocalServer =
ConfigurationManager.AppSettings["LocalCourtServiceAddress"];

 string ProdServer =
ConfigurationManager.AppSettings["ProdCourtServiceAddress"];

 EndpointIdentity identity =
EndpointIdentity.CreateDnsIdentity("triedata.com");

 this.Endpoint.Address = new System.ServiceModel.EndpointAddress(new
Uri(ProdServer),

 identity, this.Endpoint.Address.Headers);

 }

 }

}

TRIEDATA, INC Page 57 of 73

Now we are ready to consume the service. All you need is one call as below

5 E-CERTIFY EMAIL DELIVERY SERVICE

Clerk E-Certify web application residing within TRIEDATA data center is able to connect to multiple types of email services. We
currently support following types of email services.

• SMTP

GetCertifiedCourtImagesByDocketsAndSendEmail

using (MyCourtServiceReference myClient = new MyCourtServiceReference())

{

 var tempResponse =
client.GetCertifiedCourtImagesByDocketsAndSendEmail(SubscriberId, Token, PublisherId,
myRequests, UserRef, EmailId);

 var ResponseCode = tempResponse.websvcresponse.ResponseCode.ToString();

 if(ResponseCode == “1”)

 {

 foreach(var tempRec in tempResponse.CertifiedImages)

 {

 // Do your processing

 }

 }

 else

 {

 // We need to log it somehow

 }

}

TRIEDATA, INC Page 58 of 73

• MS-Exchange (OWA)

• Office 365

If your email service offers any of the above services, then there are no further changes needed. All you need to do is to provide
TRIEDATA with following information.

• User name

• Password

• Server end point address

Upon completing the certification process, Clerk E-Certify will send an email, using your email server, to end user with links to
download the certified document.

5.1 CUSTOM EMAIL DELIVERY SERVICE

In the event your office does not offer any of the services mentioned above, you can create a custom WCF service to send the
emails. Clerk’s IT is responsible for creating the service. Clerk E-Certify will send following information to Clerk’s service.

Operation Description

SendCertifiedCourtDocEmail This service sends certified document links to Clerk service

In the event the Clerk email service is not available, Clerk eCertify will attempt to resend the information 5 times in succession.
If the service is still not available, then Clerk eCertify will move the message for manual processing.

5.1.1 SENDCERTIFIEDCOURTDOCEMAIL()

This method sends both court records and official record emails. “Field 1” within the data packet denotes whether
this is an Official Record or Court Record.

Method name: SendCertifiedCourtDocEmail ()

Source: Clerk E-Certify web application

Target: Clerk’s WCF email service

Method: Https Post

Request Format: JSON

Response Format: JSON

Endpoints: Supports REST

5.1.1.1 SENDEMAILREQUEST

Here is the data definition for input to the SendCertifiedCourtDocEmail () operation:

TRIEDATA, INC Page 59 of 73

Index Field Name Description Definition/Values

1 SenderEmailAddress Email address of the recipient String

2 CertifiedDocuments list of certified documents Object

CertifiedDocuments object is defined as follows:

Index Field Name Description Definition/Values

1 CaseNO Case No Not Null

Max Size: 30

2 CaseType Indicating whether UCN or
LOCALCASENUMBER

Not Null, integer

UCN = 1, LOCALCASENUMBER = 2,
UNKNOWN = 3

3 DocketNumber Docket number associated with
the document

If Field 1 is “100”, the docket
number;

If Field 1 is “200”, official record
instrument number

Not Null

Max Size: SQL integer (10 chars)

4 DocketDescription

Document description

If Field 1 is “100”, the docket
description;

If Field 1 is “200”, official record
description

Alphanumeric String, Not Null

Max Size: 100

5 UniqueCode Unique identifier is created for
each electronic certified
document

Alphanumeric String, Not Null

Max Size: 50

6 FileLink URL location pointing to the
certified document. It is
encrypted.

Alphanumeric String, Not Null

7 Field1 This field indicates whether the
document is an Official Record or
Court Document.

Alphanumeric String, Not Null

“100” – Official Record

TRIEDATA, INC Page 60 of 73

“200” – Court Record

8 Field2 Not used Not used

9 Field3 Not used Not used

10 Field4 Not used Not used

11 Field5 Not used Not used

5.1.1.2 SENDEMAILRESPONSE

Here is the data returned by the client operation:

Index Field Name Description Definition/Values

1 ResponseCode Status code Not Null, integer value

Value = 1: success

Value >1: exception

2 ResponseDetails Information for exceptions Nullable, String

Max Size: 100

If there is an exception, provide details
on the error.

6 VERIFICATION

Clerk E-Certify offers two methods for verifying certified documents. The first method is to verify by unique code
and the second method is to upload the certified document.

6.1 VERIFY BY CODE

Verify by code method is used by either entering the unique code on Clerk eCertify web site or by scanning the QR
code embedded on the first page of the certified document. The system confirms the validity of the code and
optionally allows the user to download watermarked original document for side-by-side comparison.

Please note that depending upon the document type, certain court documents such as Juvenile and mental health
documents may not be available for side-by-side comparison. In this case, always advice the user to upload the
original electronic certified copy for full verification.

TRIEDATA, INC Page 61 of 73

Verify by code user interface can be launched by three methods

6.1.1 BROWSER REDIRECTION

You an redirect the user to https://www.clerkecertify.com/VerifyImage web site and let the user enter the code on
Clerk E-Certify web site.

This option provides both verification by code and verification by file upload on the same user interface.

6.1.2 JAVA SCRIPT MODAL WINDOW

A java script-based interface is available for integrating with your web site. You can use following steps to embed
the verification module within your web application.

1. Contact TRIEDATA and advise them about your domain name (Example: Browardclerk.org,
Osceolaclerk.com etc.). Each domain name needs to be explicitly approved before your code can activate
it. We will enable Cross Origin Resource Sharing permission (CORS) for your domain name.

2. Make sure that pre-requisite libraries such as bootstrap, jQuery, jQuery and jQuery forms are loaded. CDN
path for all items are shown below

3. Assign a DIV element to host the “Verify by Code textbox” in your view

Verification by code URL Link : https://test.clerkecertify.com/VerifyImage

<link href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css" rel="stylesheet"
integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh"
crossorigin="anonymous">

<link href="https://code.jquery.com/ui/1.10.4/themes/ui-lightness/jquery-ui.css" rel="stylesheet" />

<script src="https://code.jquery.com/jquery-1.10.2.js"></script>

<script src="https://code.jquery.com/ui/1.10.4/jquery-ui.js"></script>

<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/js/bootstrap.min.js" integrity="sha384-
wfSDF2E50Y2D1uUdj0O3uMBJnjuUD4Ih7YwaYd1iqfktj0Uod8GCExl3Og8ifwB6"
crossorigin="anonymous"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery.form/4.2.2/jquery.form.min.js"
integrity="sha384-FzT3vTVGXqf7wRfy8k4BiyzvbNfeYjK+frTVqZeNDFl8woCbF0CYG6g2fMEFFo/i"
crossorigin="anonymous"></script>

https://www.clerkecertify.com/VerifyImage
https://test.clerkecertify.com/VerifyImage

TRIEDATA, INC Page 62 of 73

 <div class="row">

 <div class="col-md-12" id="idCorsOrigin" style="width:auto;height:auto;margin:auto;background-
color:white;padding:20px;"></div>

 </div>

 </div>

TRIEDATA, INC Page 63 of 73

4. Launch verification-by-code window on document ready event

That’s it.

You may have to tweak the timeout value to a higher value depending upon user bandwidth constraints. For most
connections, default value specified above should be sufficient.

<script type="text/javascript">
 $(document).ready(function () {
 var fileSource = 'https://www.clerkecertify.com/VerifyImage/CorsCodeGetIndex';
 $.ajax({
 url: fileSource,
 timeout: 4000,
 statusCode: {
 404: function () {
 // Simple not found page, but not CORS violation
 $("#idCorsOrigin").html(this.url + " not found");
 }
 }
 })
 .fail(function (jqXHR, textStatus) {
 // Empty status is a sign that this may be a CORS violation
 // but also check if the request timed out, or that the domain exists
 if (jqXHR.status > 0 && jqXHR.statusText == "timeout") {
 $("#idCorsOrigin").html("Unable to launch validation module Error
code: " + jqXHR.status + " " + jqXHR.statusText + " error");
 return;
 }
 else
 {
 $("#idCorsOrigin").html("Please refresh your browser page again: Error
code: " + jqXHR.status + "-" + jqXHR.statusText);
 return;
 }
 })
 .done(function (data) {
 // Successful ajax request
 $("#idCorsOrigin").html(data);
 });

 });
</script>

TRIEDATA, INC Page 64 of 73

6.1.3 EMBEDDED VIEW

Instead of opening a modal pop-up window to display the results of code verification, you can embed the results in
a DIV within your web page. This will allow you to display the results of document verification within your own
portal without the pop up box.

All you need to do is to pass the name of the DIV as a parameter within the Javascript (Above).

Here is the full script

TRIEDATA, INC Page 65 of 73

<!-- If this div is setup here and the id is passed to Clerk eCertify controller,
then Clerk eCertify will display the results in this DIV rather than as a pop up
box -->
 <div class="row">
 <div id="idVerifyByCodeResult" class="text-center">
 </div>

<script type="text/javascript">
 $(document).ready(function () {
 var fileSource =
'https://www.clerkecertify.com/VerifyImage/CorsCodeGetIndex?TargetDiv=idVerifyByCodeResult';
 $.ajax({
 url: fileSource,
 timeout: 4000,
 statusCode: {
 404: function () {
 // Simple not found page, but not CORS violation
 $("#idCorsOrigin").html(this.url + " not found");
 }
 }
 })
 .fail(function (jqXHR, textStatus) {
 // Empty status is a sign that this may be a CORS violation
 // but also check if the request timed out, or that the domain exists
 if (jqXHR.status > 0 && jqXHR.statusText == "timeout") {
 $("#idCorsOrigin").html("Unable to launch validation module Error
code: " + jqXHR.status + " " + jqXHR.statusText + " error");
 return;
 }
 else
 {
 $("#idCorsOrigin").html("Please refresh your browser page again: Error
code: " + jqXHR.status + "-" + jqXHR.statusText);
 return;
 }
 })
 .done(function (data) {
 // Successful ajax request
 $("#idCorsOrigin").html(data);
 });

 });
</script>

</script>

TRIEDATA, INC Page 66 of 73

6.1.4 QR CODE VERIFICATION ON YOUR OWN WEB SITE

Traditionally certified documents have a cover page containing a QR code for verifying the authenticity of the code
and for retrieving the original image for side-by-side comparison. Users can use smartphones to scan the QR code,
which will redirect them to launch clerkecerify.com web site to validate the code and optionally download the
original file for side-by-side comparison.

Since the Clerk web site has ability to integrate Clerk eCertify verification logic within their web portal, it makes
sense to redirect the user to Clerk web portal for verifying the documents. To do this, you need to do the following

1. Create a class to hold the Code

2. Create a controller action to receive the code. Let’s say the controller is called “everify”

QR code contains a hyperlink to launch default web browser. Here is an example for the hyperlink

https://verify.clerkecertify.com/VerifyImage/VerifyCode?Code=CAA-CAFGEERTG-BFEGD-EEACFEIA-EAFGE-K

As you can see, the QR code is pointing to clerkecertify.com web site

public class EcertifyRequestViewModel

 {

 public string CorrelationId { get; set; }

}

 public ActionResult VerifyCode(string Code)
 {
 EcertifyRequestViewModel myModel = new EcertifyRequestViewModel();
 myModel.CorrelationId = Code;
 return View(myModel);

 }

https://verify.clerkecertify.com/VerifyImage/VerifyCode?Code=CAA-CAFGEERTG-BFEGD-EEACFEIA-EAFGE-K

TRIEDATA, INC Page 67 of 73

3. Use Javascript to load Clerk eCertify “Verify by code” widget as documented in above section and
then update the loaded div with the correlation Id.

 <div class="row">
 <div class="col-md-12" id="idCorsOrigin" style="width:auto;
height:auto;margin:auto;background-color:white;padding:20px;"></div>

 </div>

<script type="text/javascript">

$(document).ready(function () {
var fileSource = https://test.clerkecertify.com/VerifyImage/CorsCodeGetIndex';
 $.ajax({
 url: fileSource,
 timeout: 4000,
 statusCode: {
 404: function () {
 // Simple not found page, but not CORS violation
 $("#idCorsOrigin").html(this.url + " not found");
 }
 }
 })
 .fail(function (jqXHR, textStatus) {
 // Empty status is a sign that this may be a CORS
violation
 // but also check if the request timed out, or that the
domain exists
 if (jqXHR.status > 0 && jqXHR.statusText == "timeout") {
 $("#idCorsOrigin").html("Unable to launch
validation module Error code: " + jqXHR.status + " " + jqXHR.statusText + " error");
 return;
 }
 else {
 $("#idCorsOrigin").html("Please refresh your
browser page again: Error code: " + jqXHR.status + "-" + jqXHR.statusText);
 return;
 }
 })
 .done(function (data) {
 // Successful ajax request
 $("#idCorsOrigin").html(data);
 // Lets fill the correlation id
 var correlationVal = “@Model.CorrelationId”;
 $('#idCode').val(correlationVal);
 }); /* Drakes, 2015 */
 });
</script>

TRIEDATA, INC Page 68 of 73

Now you have a valid controller action and View to load the target DIV with the QR code.

Your cover page QR code can be updated to point to https://your_web_site_url/everify/VerifyCode?Code=AAA-
BBB-CCCC and it should load Clerk eCertify widget and update Clerk eCertify DIV (idCode) with the parameter.

User will be prompted to click on google “Recaptcha” to continue verification process.

6.2 VERIFY BY FILE UPLOAD

Verify by file upload method is used for validating electronic copy of the certified document. User can upload the
document and the system will perform an exhaustive set of checks to verify the authenticity of the document.

Verify by file upload is the most authentic and easiest way to validate a certified copy. This method checks
following aspects of the document

• Does this document contain Clerk eCertify unique identifiers?
• Is it a signed document?
• Was this document signed with a valid digital signature?
• Was the signing certificate revoked at the time of signing the document?
• Was this document generated from the Clerk’s digital signature?

All certified documents can be verified by this method and does not require a side-by-side comparison. Since
certain court documents are not allowed to be displayed to general public, this method is the preferred method
for validating all document types.

Verify by file user interface can be launched by three methods

6.2.1 BROWSER REDIRECTION

You an redirect the user to https://www.clerkecertify.com/VerifyImage web site and let the user upload the file on
Clerk E-Certify web site.

This option provides both verification by code and verification by file upload on the same user interface.

6.2.2 JAVA SCRIPT MODAL WINDOW

A java script based modal pop up window interface is available for integrating with your web site. You can use
following steps to embed the verification module within your web application.

1. Contact TRIEDATA and advise them about your domain name (Example: Browardclerk.org,
Osceolaclerk.com etc.). Each domain name needs to be explicitly approved before your code can activate
it. We will enable Cross Origin Resource Sharing permission (CORS) for your domain name.

Verification by code URL Link: https://test.clerkecertify.com/VerifyImage

https://your_web_site_url/everify/VerifyCode?Code=AAA-BBB-CCCC
https://your_web_site_url/everify/VerifyCode?Code=AAA-BBB-CCCC
https://www.clerkecertify.com/VerifyImage
https://test.clerkecertify.com/VerifyImage

TRIEDATA, INC Page 69 of 73

2. Make sure that pre-requisite libraries such as bootstrap, jQuery, jQuery and jQuery forms are loaded. CDN
path for all items are shown below

3. Assign a DIV element to host the file selection box in your view

<link href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css" rel="stylesheet"
integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh"
crossorigin="anonymous">

<link href="https://code.jquery.com/ui/1.10.4/themes/ui-lightness/jquery-ui.css" rel="stylesheet" />

<script src="https://code.jquery.com/jquery-1.10.2.js"></script>

<script src="https://code.jquery.com/ui/1.10.4/jquery-ui.js"></script>

<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/js/bootstrap.min.js" integrity="sha384-
wfSDF2E50Y2D1uUdj0O3uMBJnjuUD4Ih7YwaYd1iqfktj0Uod8GCExl3Og8ifwB6"
crossorigin="anonymous"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery.form/4.2.2/jquery.form.min.js"
integrity="sha384-FzT3vTVGXqf7wRfy8k4BiyzvbNfeYjK+frTVqZeNDFl8woCbF0CYG6g2fMEFFo/i"
crossorigin="anonymous"></script>

 <div class="row">

 <div class="row">

 <div class="col-md-12" id="idCorsFileOrigin" style="width:auto;
height:auto;margin:auto;background-color:white;padding:20px; "></div>

 </div>

 </div>

TRIEDATA, INC Page 70 of 73

4. Launch verification-by-code window on document ready event

<script type="text/javascript">
 $(document).ready(function () {
 var fileSource = 'https://www.clerkecertify.com/VerifyImage/CorsFileGetIndex';
 $.ajax({
 url: fileSource,
 timeout: 4000,
 xhrFields: {
 withCredentials: true
 },
 statusCode: {
 404: function () {
 // Simple not found page, but not CORS violation
 $("# idCorsFileOrigin ").html(this.url + " not found");
 }
 }
 })
 .error(function (jqXHR, textStatus) {
 // Empty status is a sign that this may be a CORS violation
 // but also check if the request timed out, or that the domain exists

 $("#idCorsFileOrigin").html("We have encountered an error Status: " +
jqXHR.status + "-" + jqXHR.statusText);
 return;
 }
)
 .fail(function (jqXHR, textStatus) {
 // Empty status is a sign that this may be a CORS violation
 // but also check if the request timed out, or that the domain exists
 if (jqXHR.status > 0 && jqXHR.statusText == "timeout") {
 $("#idCorsFileOrigin").html("Unable to launch
validation module Error code: " + jqXHR.status + " " + jqXHR.statusText + " error");
 return;
 }
 else
 {
 $("#idCorsFileOrigin").html("Please refresh your browser page again:
Error code: " + jqXHR.status + "-" + jqXHR.statusText);
 return;
 }
 })
 .done(function (data) {
 // Successful ajax request
 $("#idCorsFileOrigin").html(data);
 });
});
</script>

TRIEDATA, INC Page 71 of 73

That’s it.

You may have to tweak the timeout value to a higher/lower value depending upon user bandwidth constraints.

6.2.3 EMBEDDED VIEW

Instead of opening a modal pop-up window to display the results of file verification, you can embed the results in a
DIV within your web page. This will allow you to display the results of document verification within your own portal
without the pop up box.

All you need to do is to pass the name of the DIV as a parameter within the Javascript (Above).

Here is the full script

TRIEDATA, INC Page 72 of 73

<!-- If this div is setup here and the id is passed to Clerk eCertify controller,
then Clerk eCertify will display the results in this DIV rather than as a pop up
box -->
 <div class="row">
 <div id="idVerifyByFileResult" class="text-center">
 </div>

<script type="text/javascript">
 $(document).ready(function () {
 var fileSource =
'https://www.clerkecertify.com/VerifyImage/CorsCodeGetIndex?TargetDiv=idVerifyByFileResult';
 $.ajax({
 url: fileSource,
 timeout: 4000,
 statusCode: {
 404: function () {
 // Simple not found page, but not CORS violation
 $("#idCorsOrigin").html(this.url + " not found");
 }
 }
 })
 .fail(function (jqXHR, textStatus) {
 // Empty status is a sign that this may be a CORS violation
 // but also check if the request timed out, or that the domain exists
 if (jqXHR.status > 0 && jqXHR.statusText == "timeout") {
 $("#idCorsOrigin").html("Unable to launch validation module Error
code: " + jqXHR.status + " " + jqXHR.statusText + " error");
 return;
 }
 else
 {
 $("#idCorsOrigin").html("Please refresh your browser page again: Error
code: " + jqXHR.status + "-" + jqXHR.statusText);
 return;
 }
 })
 .done(function (data) {
 // Successful ajax request
 $("#idCorsOrigin").html(data);
 });

 });
</script>

</script>

TRIEDATA, INC Page 73 of 73

	1 Overview
	2 Architecture and process flow
	3 Outbound connector interfaces
	3.1 Court connectors
	3.1.1 E-Certify custom connector
	3.1.2 GetImageByDocket()
	3.1.3 Docket by Case Request
	3.1.3.1.1 Docket Object

	4 Inbound connector interfaces
	4.1 Requests requiring payment collection
	4.1.1 API End points
	4.1.2 Integration of Clerk E-Certify for Online Payment Processing
	4.1.3 ClerkecertifyConnector
	4.1.4 AddCourtDocToShoppingCart()
	4.1.5 AddORDocToShoppingCart()
	4.1.6 Removedocfromcart()
	4.1.7 Browser redirection
	4.1.7.1 GetShoppingCartUrl()

	4.1.8 Java script popup window
	4.1.9 Embedded shopping cart view
	4.1.10 Payment confirmation

	4.2 ClerkecertifyConnectorCom - Classic ASP Only
	4.3 Requests without payment collection
	4.3.1 API End points
	4.3.2 API name: SendCertifiedCourtImageByDocketID()
	CourtCertifiedImages Object

	4.3.3 API name: GetCertifiedCourtImagesByDocketsAndSendEmail ()
	4.3.4 API name: SendCertifiedORImageByReferenceNo ()
	4.3.5 API name: SendCertifiedORImages ()
	4.3.6 API name: GetCertifiedImageByReferenceNoAndSendEmail ()
	4.3.7 X509 Certification for Authentication
	4.3.7.1 Installing X509 certificate – Install triedata.com certificate on Client machine:
	4.3.7.2 Generate self-signed certificate of the client:
	4.3.7.3 Export public key from the self-signed certificate
	4.3.7.4 Setting up CourtService.svc reference
	4.3.7.5 Consuming CourtService.svc reference

	5 E-Certify Email Delivery Service
	5.1 Custom email delivery service
	5.1.1 SendCertifiedCourtDocEmail()
	5.1.1.1 SendEmailRequest
	5.1.1.2 SendEmailResponse

	6 verification
	6.1 Verify by code
	6.1.1 Browser redirection
	6.1.2 Java script modal window
	6.1.3 Embedded view
	6.1.4 QR Code verification on your own web site

	6.2 Verify by file upload
	6.2.1 Browser redirection
	6.2.2 Java script modal window
	6.2.3 Embedded view

